Periodic Research

Softly πĜB*- Normal Spaces

Abstract

In this paper, we introduced a new concept of soft $\pi \hat{g}b^*$ normality by using $\pi \hat{g}b^*$ -open set due to Nathiya and Vaiyomathi[4]. The concept of softly normal was introduced by M. C. Sharma and Hamant Kumar [6]. M. C. Sharma and Hamant Kumar [6] introduced a weaker version of normality called softly-normality and prove that soft-normality is a property, which is implied by quasi-normality and almost normality and obtained several properties of such a space. Recently, Nidhi Sharma and Neeraj Kumar Tomar [5] introduced a weaker version of normality called softly Z*-normality by using Z*-open set and obtained several properties of such a space. We introduced the concept of $\pi \hat{g}b^*$ -normal, almost $\pi \hat{g}b^*$ -normal, quasi $\pi \hat{g}b^*$ -normal, mildly $\pi \hat{g}b^*$ -normal .We prove the soft $\pi \hat{g}b^*$ -normality is a topological property and it is a hereditary property with respect to closed domain subspace. Moreover, we obtain some new characterizations and preservation theorems of softly $\pi \hat{g} b^*$ normal spaces .We insure the existence of utility for new results of soft π ĝb*-normality using separation axioms in topological spaces which is separate on a known separation axioms in topological spaces.

Keywords: π-closed, πĝb*-closed, α-closed sets, πĝb*-normal, almost πĝb*-normal, quasi πĝb*-normal, mildly πĝb*-normal, softly πĝb*-normal spaces.

2010 AMS Subject Classification

54D15

Introduction

We introduced a new class of softly normal called soft $\pi \hat{g}b^*$ -normality by using $\pi \hat{g}b^*$ -open set due to Nathiya and Vaiyomathi and obtained several properties of such a space. We prove that soft $\pi \hat{g}b^*$ -normality is a topological property and it is a hereditary property with respect to closed domain subspace. Moreover, we obtain some new characterizations and preservation theorems of softly $\pi \hat{g}b^*$ -normal spaces \mathbf{Aim} of the \mathbf{Study}

The aim of this paper, we introduced a new class of softly normal called soft $\pi \hat{g}b^*$ -normality by using $\pi \hat{g}b^*$ -open set due to Nathiya and Vaiyomathi⁴ and obtained several properties of such a space. We introduced the concept of $\pi \hat{g}b^*$ -normal, almost $\pi \hat{g}b^*$ -normal, mildly $\pi \hat{g}b^*$ -normal .We insure the existence of utility for new results of soft $\pi \hat{g}b^*$ -normality using separation axioms in topological spaces which is separate on a known separation axioms in topological spaces.

Review of Literature

The concept of softly normal was introduced by M. C. Sharma and Hamant Kumar 6 . M. C. Sharma and Hamant Kumar 6 introduced a weaker version of normality called softly-normality and prove that soft-normality is a property, which is implied by quasi-normality and almost normality and obtained several properties of such a space. Recently, Nidhi Sharma and Neeraj Kumar Tomar 5 introduced a weaker version of normality called softly Z*-normality and prove that soft Z*-normality is a property, which is implied by quasi Z*-normality and almost Z*-normality and obtained several properties of such a space.

Preliminaries Definition

A subset A of a topological space X is called

- 1. α -closed [3] if $cl(int(cl(A))) \subseteq A$.
- 2. π g-closed [1] if cl(A) \subset A whenever A \subset U and U is π -open in X.
- πĝb*-closed [4] if int(b-cl(A)) ⊂ Awhenever A ⊂ U and U is πg-open in X.
- 4. Regular closed [10] if A = cl(int(A)).
- 5. The finite union of regular open sets is said to be π -open.

M.C. Sharma
Associate Professor,
Deptt.of Mathematics,
N.R.E.C. College,
Khurja,India

Poonam Sharma Research Scholar, Deptt.of Mathematics, Mewar University, Gangrar, Chittorgarh, Rajasthan,India

The complement of α -closed (resp. πg closed, $\pi \hat{g}b^*$ -closed, regular closed, π -closed) set is called α-open (resp. πg-closed , πĝb*-open, regular open, π -open) set. The intersection of all $\pi \hat{g}b^*$ -closed sets containing A is called the $\pi \hat{g}b^*$ -closure of A and denoted πĝb*-cl(A).The union of all πĝb*-open subsets of X which are contained in A is called the $\pi \hat{g} b^*$ -interior of A and denoted by $\pi \hat{g} b^*$ -int(A). Throughout this paper, (X, τ) , (Y, σ) spaces always mean topological spaces X, Y respectively on which no separation axioms are assumed unless explicitly

Definitions stated in preliminaries, we have the following diagram:

Closed $\Rightarrow \alpha$ -closed $\Rightarrow \pi \hat{q} b^*$ -closed However the converses of the above are not true may be seen by the following examples.

Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b\},$ X). Then the set $A = \{b\}$ is $\pi \hat{q} b^*$ -closed set but not closed set in X.

Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b\},$ b),{a, b, c}, X}. Then the set $A = \{c\}$ is α -closed set as well as $\pi \hat{g}b^*$ -closed set but not closed set in X .

Remark

Every regular open (resp. regular closed) set is π -open (resp. π -closed).

 \Rightarrow mild $\pi \hat{g}b^*$ -normal quasi normal \Rightarrow quasi $\pi \hat{g}b^*$ -normal \Rightarrow soft $\pi \hat{g}b^*$ -normal \uparrow mildly normal normal $\Rightarrow \pi$ -normal ⇒ almost normal ⇒ softly normal $\downarrow \downarrow$ $\downarrow \downarrow$ \prod 11 $\downarrow \downarrow$ $\Rightarrow \pi \hat{g}b*-normal$ \Rightarrow almost $\pi \hat{g}b^*$ -normal \Rightarrow soft $\pi \hat{g}b^*$ -normal \Rightarrow mild $\pi \hat{g}b^*$ -normal π-normal

Where none of the implications is reversible as can be seen from the following examples:

Example

c},{ b, d}, {a, b, d}, {b, c, d}, X }. The pair of disjoint π closed subsets of X are A = {a} and B = {c}. Also U = $\{a\}$ and $V = \{b, c, d\}$ are disjoint open sets such that A \subset U and B \subset V. Hence X is quasi-normal as well as quasi πĝb*-normal as well as softly πĝb*-normal because every open set is $\pi \hat{q} b^*$ -open set.

Example

b), {c, d},{a, c, d}, {b, c, d}, X }. Then A = {b} is closed and B = {a} is regularly closed sets there exist disjoint open sets $U = \{b, c, d\}$ and $V = \{a\}$ of X such that $A \subset$ U and $B \subset V$. Hence X is almost normal as well as almost $\pi \hat{g}b^*$ -normal as well as softly $\pi \hat{g}b^*$ -normal because every open set is $\pi \hat{g}b^*$ -open set.

Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b, d\}, \{a, b, d\},$ {b, c, d}, X}. The pair of disjoint closed subsets of X are $A = \{a\}$ and $B = \{c\}$. Also $U = \{a, b\}$ and $V = \{c, d\}$ are $\pi \hat{g}b^*$ -open sets such that $A \subset U$ and $B \subset V$. Hence X is $\pi \hat{q} b^*$ --normal but it is not normal.

Periodic Research

Softly πĜB*- Normal Spaces Definition

- 1. A topological space X is said to be Softly Normal [6](softly $\pi \hat{g}b^*$ -normal) if for any two disjoint subsets A and B of X, one of which is π -closed and other is regularly closed, there exist disjoint open(πĝb*-open) sets U and V of X such that A \subset U and B \subset V.
- Almost-normal 7 (almost $\pi \hat{g}b^*$ -normal) if for every pair of disjoint sets A and B, one of which closed and other is regularly closed, there exist open $(\pi \hat{q}b^*$ - open) sets U and V of X such that A \subset U and $B \subset V$.
- Quasi normal [11] (quasi $\pi \hat{g}b^*$ -normal) if for any two disjoint π -closed subsets A and B of X, there exist disjoint open (π ĝb*-open) sets U and V of X such that $A \subset U$ and $B \subset V$.
- π -normal [2]](π ĝb*-normal) if for any two disjoint closed subsets A and B of X, one of which is π closed, there exist disjoint open (π ĝb*-open) sets U and V of X such that $A \subset U$ and $B \subset V$.
- Mildly normal [8,9] (mildly $\pi \hat{g}b^*$ -normal) if for any two disjoint regularly closed subsets A and B of X, there exist disjoint open (π ĝb*-open) sets U and V of X such that $A \subset U$ and $B \subset V$.

By the definitions stated above, we have the following diagrams:

Example

Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, b\}, \{a, c\},$

X). Then (X, τ) is almost -normal as well as almost π ĝb*-normal, but it is not π ĝb*-normal, since the pair of disjoint closed sets {b} and {c} have no disjoint π ĝb*-open sets containing them. But it is not normal.

Example

Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, d\}, \{a$ b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X}. Then X is $\pi \hat{g}b^*$ normal.

Theorem

For a topological space X, the following are equivalent:

- X is softly $\pi \hat{g}b^*$ -normal.
- For every π -closed set A and every regularly open set B with A \subset B, there exists a $\pi \hat{g}b^*$ -open set U such that $A \subset U \subset \pi \hat{g}b^*$ -cl (U) $\subset B$.
- For every regularly closed set A and every π open set B with A \subset B, there exists a $\pi \hat{g}b^*$ -open set U such that $A \subset U \subset \pi \hat{g}b^*$ -cl (U) $\subset B$.
- For every pair consisting of disjoint sets A and B, one of which is π -closed and the other is regularly closed, there exist $\pi \hat{g}b^*$ -open sets U

and V such that A \subset U, B \subset V and $\pi \hat{g}b^*$ -cl (U) \cap $\pi \hat{g}b^*$ -cl (V) = ϕ .

Proof

- a. \Rightarrow (b). Assume (a). Let A be any π -closed set and B be any regularly open set such that A \subset B. Then A \cap (X B) = ϕ , where (X B) is regularly closed. Then there exist disjoint $\pi \hat{g}b^*$ -open sets U and V such that A \subset U and (X B) \subset V. Since U \cap V= ϕ , then $\pi \hat{g}b^*$ -cl(U) \cap V = ϕ . Thus $\pi \hat{g}b^*$ -cl (U) \subset (X V) \subset (X (X B)) = B. Therefore, A \subset U \subset $\pi \hat{g}b^*$ -cl(U) \subset B.
- b. \Rightarrow (c). Assume (b). Let A be any regularly closed set and B be any π -open set such that A \subset B. Then, $(X B) \subset (X A)$, where (X B) is π -closed and (X A) is regularly open. Thus by (b), there exists a $\pi \hat{g}b^*$ -open set W such that $(X B) \subset W \subset \pi \hat{g}b^*$ -cl $(W) \subset (X A)$. Thus A $\subset (X \pi \hat{g}b^*$ -cl $(W)) \subset (X W) \subset B$. So ,we let U = $(X \pi \hat{g}b^*$ -cl(W)), which is $\pi \hat{g}b^*$ -open and since $W \subset \pi \hat{g}b^*$ -cl(W), then $(X \pi \hat{g}b^*$ -cl(W) $\subset (X W)$. Thus U $\subset (X W)$, hence $\pi \hat{g}b^*$ -cl(U) $\subset \pi \hat{g}b^*$ -cl(X W) = $(X W) \subset B$.
- c. \Rightarrow (d). Assume (c). Let A be any regular closed set and B be any π -closed set with A \cap B = φ . Then A \subset (X B), where (X B) is π -open. By (c), there exists a $\pi \hat{g}b^*$ -open set U such that A \subset U \subset $\pi \hat{g}b^*$ -cl (U) \subset (X B). Now, $\pi \hat{g}b^*$ -cl (U) is $\pi \hat{g}b^*$ -closed. Applying (c) again we get a $\pi \hat{g}b^*$ -open set W such that A \subset U \subset $\pi \hat{g}b^*$ -cl(U) \subset W \subset $\pi \hat{g}b^*$ -cl(W) \subset (X B). Let V = (X $\pi \hat{g}b^*$ -cl (W)), then V is $\pi \hat{g}b^*$ -open set and B \subset V. We have (X $\pi \hat{g}b^*$ -cl (W)) \subset (X W), hence V \subset (X W), thus $\pi \hat{g}b^*$ -cl (V) \subset $\pi \hat{g}b^*$ -cl(X W) = (X W). So, we have $\pi \hat{g}b^*$ -cl(U) \subset W and $\pi \hat{g}b^*$ -cl(V) \subset (X W). Therefore $\pi \hat{g}b^*$ -cl(U) $\cap \pi \hat{g}b^*$ -cl(V) $= \varphi$. \subset d \Rightarrow (a) is clear.

Theorem

For a topological space X, the following are equivalent

- a. X is softly $\pi \hat{g}b^*$ -normal.
- b. For every pair of sets U and V, one of which is π-open and the other is regular open whose union is X, there exist πĝb*-closed sets G and H such that G ⊂ U, H ⊂ V and G ∪ H = X.
- c. For every π -closed set A and every regular open set B containing A, there is a $\pi \hat{g}b^*$ -open set V such that $A \subset V \subset \pi \hat{g}b^*$ -cl(V) $\subset B$.

Proof

(a) \Rightarrow (b). Let U be a π-open set and V be a regular open set in a softly $\pi \hat{g}b^*$ -normal space X such that U \cup V = X. Then (X - U) is π -closed set and (X - V) is regular closed set with (X - U) \cap (X - V) = ϕ . By soft $\pi \hat{g}b^*$ -normality of X, there exist disjoint $\pi \hat{g}b^*$ -open sets U₁ and V₁ such that X - U \subset U₁ and X - V \subset V₁.

Periodic Research

Let $G=X-U_1$ and $H=X-V_1$. Then G and H are $\pi \hat{g}b^*$ -closed sets such that $G\subset U,\, H\subset V$ and $G\cup H=X$. (b) \Rightarrow (c) and (c) \Rightarrow (a) are obvious.

Using Theorem 3.7, it is easy to show the following theorem, which is a Urysohn's Lemma version for soft $\pi \hat{g}b^*$ -normality. A proof can be established by a similar way of the normal case.

Theorem

A space X is softly $\pi \hat{g}b^*$ -normal if and only if for every pair of disjoint closed sets A and B, one of which is π -closed and other is regularly closed, there exists a continuous function f on X into [0, 1], with its usual topology, such that $f(A) = \{0\}$ and $f(B) = \{1\}$.

It is easy to see that the inverse image of a regularly closed set under an open continuous function is regularly closed and the inverse image of a π -closed set under an open continuous function π -closed. We will use that in the next theorem.

Theorem

Let X is a softly $\pi \hat{g}b^*$ -normal space and $f: X \rightarrow Y$ is an open continuous injective function. Then f(X) is a softly $\pi \hat{g}b^*$ -normal space.

Proof

Let A be any π -closed subset in f(X) and let B be any regularly closed subset in f(X) such that $A \cap B = \varphi$. Then $f^{-1}(A)$ is a π -closed set in X, which is disjoint from the regularly closed set $f^{-1}(B)$. Since X is softly $\pi \hat{g}b^*$ -normal, there are two disjoint open sets U and V such that $f^{-1}(A) \subset U$ and $f^{-1}(B) \subset V$. Since f is one-one and open, result follows.

Corollary

Soft π gb*-normality is a topological property.

Lemma

Let M be a closed domain subspace of a space X. If A is a $\pi \hat{g}b^*$ -open set in X, then $A \cap M$ is $\pi \hat{g}b^*$ -open set in M.

Theorem

A closed domain subspace of a softly $\pi \hat{g}b^*$ -normal is softly $\pi \hat{g}b^*$ -normal.

Proof

Let M be a closed domain subspace of a softly $\pi \hat{g}b^*$ -normal space X. Let A and B be any disjoint closed sets in M such that A is regularly closed and B is π -closed. Then, A and B are disjoint closed sets in X such that A is regularly closed and B is π -closed in X. By soft $\pi \hat{g}b^*$ -normality of X, there exist disjoint $\pi \hat{g}b^*$ -open sets U and V of X such that $A \subset U$ and $B \subset V$. By the above **Lemma**, we have $U \cap M$ and $V \cap M$ are disjoint $\pi \hat{g}b^*$ -open sets in M such that $A \subset U \cap M$ and $B \subset V \cap M$. Hence, M is softly $\pi \hat{g}b^*$ -normal subspace.

Since every closed and open (clopen) subset is a closed domain, then we have the following corollary.

Corollary

Soft $\pi \hat{g}b^*$ -normality is a hereditary with respect to clopen subspaces.

Conclusion

In this paper, we have introduced weak form of normal space namely soft $\pi \hat{g} b^*$ -normality and established their relationships with some weak forms of normal spaces in topological spaces.

References

- B.Nathiya and K.Vaiyomathi, On πĝb*- closed sets in topological spaces, Internat.Advances Research J. in Sci. Engg. and Tech. 3(2016), no.8, 124- 127.
- E. V. Shchepin, Real functions and near normal spaces, Sibirskii Mat. Zhurnal, 13(1972), 1182-1196.
- J. Dontchev and T. Noiri, Quasi- normal spaces and πg - closed sets. Acta Math. Hungar. 89(2000), no. 3, 211-219.
- L. N. Kalantan, π-normal toplogical spaces, Filomat 22:1 (2008), 173-181.
- M.C.Sharma and Hamant Kumar, Softly normal topological spaces, Acta Ciencia Indica, Vol. XLIM(2015), no.2, 81-84.

Periodic Research

- M. K. Singal and S. P. Arya, Almost normal and almost completely regular spaces, Glasnik Mathematicki Tom 5(25) 1(1970), 141-152.
- M. K. Singal and A. R. Singal, Mildly normal spaces, Kyungpook Math. J., 13(1973), 27-31. M. Stone, Application of the theory of boolean rings to
- M. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math.Soc. 41(1937), 374 481.
- Nidhi Sharma and Neeraj Kumar Tomar, Softly Z*normal Spaces, Remarking An Analisation 2(2017), no.6 72-74.
- O. Njastad, On some classes of nearly open sets, PacificJ.Math.,15(1965), 961- 970.
- V.Zaitsev, On certain classes of topological spaces and their biocompactifications, Dokl. Akad. Nauk SSSR, 178(1968), 778-779.